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Abstract: This study identifies the optimal management policy of a given energy storage system
(ESS) installed in a grid-connected wind farm in terms of maximizing the monetary benefits and
provides guidelines for defining the economic value of the ESS under optimal management policy and
selecting the optimal size of the ESS based on economic value. Considering stochastic models for
wind power and electricity price, we develop a finite-horizon periodic-review Markov decision
process (MDP) model to seek the optimal management policy. We also use a simple optimization
model to find the optimal storage capacity and charging/discharging capacity of the ESS. By applying
our analytic approach to a real-world grid-connected wind farm located in South Korea, we verify
the usefulness of this study. Our numerical study shows that the economic value of the ESS is highly
dependent on management policy, wind electricity variability, and electricity price variability. Thus,
the optimal size of ESS should be carefully determined based on the locational characteristics and
management policy even with limited investments. Furthermore, this study provides a meaningful
policy implication regarding how much of a subsidy the government should provide for installing
ESS in a wind farm.

Keywords: wind farm; energy storage system; economic value assessment; optimal sizing; dynamic
programming; Markov decision process

1. Introduction

As greenhouse gas emission reduction has recently received extensive attention, renewable
energy resources have been rapidly integrated into the electricity sector around the world. Several
countries, including South Korea, Britain, Italy, Poland, Belgium, and Chile, as well as most states of
the U.S., have aggressively adopted renewable policies such as renewable portfolio standard (RPS).
According to a recent report published by the International Energy Agency (IEA), renewable energy
resources will account for the largest portion of total primary energy consumption in the global
electricity sector in 2030 [1]. The report projects that wind energy will make the largest contribution to
the penetration.

As the penetration level of the wind energy in an electric power system increases, the critical
weak points of the wind energy—intermittency and non-dispatchability—have posed more challenges
in the operation of the electric power system in terms of the quality of power, liability, and so on.
As attempts to overcome these challenges, new technologies have been developed, such as a smart
grid and/or an energy storage system (ESS). In particular, with recent technological advancement and
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reduced costs, integration of the battery-based energy storage system (BESS) into the electric power
system has begun in many regions. According to a database from the U.S. Department of Energy [2],
many wind farms adopted ESS in the U.S., Europe, and China. In western Texas (U.S.), 36 MW and
0.67 h duration ESS was installed at the 153 MW Notrees wind power project, 2 MW and 1 h duration
ESS was installed at the 18 MW Bosch wind power project in the northern Germany, and five serial
ESS projects, in total 16 MW/71 MWh, were invested for a hybrid system with 500 MW wind and
100 solar PV capacities in Zhangbei, China.

In South Korea, the government has developed a plan to actively expand the use of renewable
energy in the electricity sector. One goal of the plan announced in 2014 is to increase the
portion of renewable energy resources in the electricity sector from 3.66% in 2012 to 13.4% in 2035.
Among renewable energy resources, wind energy is expected to account for the largest portion (more
than 30%) in 2030 [3]. Accordingly, a national renewable energy policy mandates the RPS for power
producers whose installed capacity is over 500 MW. In particular, Jeju Island, home to more than
650,000 people, has a plan to generate electricity from only renewable energy sources and considers
wind turbines as the primary renewable sources.

As a way to resolve the weak points of the wind energy, the Korean government has encouraged
the adoption of ESS by giving a high subsidy to a wind farm that has its own ESS. In 2016, a power
supplier with ESS connected to a wind farm can receive five renewable energy certificates (RECs) for a
unit of electricity generated during the peak period under the Korean RPS policy. On the other hand, a
wind farm without ESS receives only one REC for a unit of electricity generated. In 2015, Jeju Island
legislated that a new wind farm must have its own ESS, and its charging/discharging capacity should
be larger than 10% of the nameplate capacity of the wind farm.

The literature on ESS reveals that the lack of adequate information on ESS economy is a
major obstacle in building feasible business models and regulation strategies such as government
subsidies [4–6]. Despite a considerable policy support for promoting ESS, its sizable adoption has
not been achieved because its economic feasibility is questionable in practice. This low economic
feasibility is mainly due to the high upfront cost of installing ESS. Moreover, arbitrary decisions made
about operations and size of ESS worsen the economic viability. For example, Walawalkar and Apt [7]
reported that only 2.5% of the total power delivered in the U.S. passed through an ESS while there
were over 200 GW of installed ESS capacity. This non-optimal size adding to the high upfront cost may
prevent acceptable economic feasibility of each ESS. Thus, a valid economic evaluation of ESS should
be made on the basis of how to adequately size and operate it.

While the ESS size and operations have significant effects on its economic value, to the best of
our knowledge, no research has considered how to determine ESS size together with its optimal
management policy in the context of assessing economic benefits in a grid-connected wind farm.
This study attempts to make a contribution to the literature by addressing this problem. We first
identify a management policy for optimally operating the ESS. Considering the inter-temporal nature of
ESS operations (i.e., the operation in one time step will affect its operation in the others), we employ a
dynamic programming approach for the problem. In particular, to accommodate the uncertainty
associated with electricity price and wind energy, we formulate the problem as a Markov Decision
Process (MDP) model and find the optimal management policy. The problem has, fortunately, similar
structural properties with traditional inventory control problems [8], which are typically formulated
as MDP models [9–11]. Within the MDP model, we define how to assess the economic value of the
ESS and find an optimal ESS size that maximizes its economic value. This work finally simulates the
effects of several factors such as electricity price and demand on the economic value in a grid-connected
wind farm.

The rest of this paper is organized as follows. We first review the relevant literature on wind-ESS
hybrid systems and the related optimization models and emphasize our new contributions in Section 2.
We introduce a finite-horizon MDP model to identify an optimal management policy for operating the
ESS in Section 3, followed by the structural analysis of the optimal management policy in Section 4.
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Section 5 describes the economic value of the ESS under the optimal management policy and how
to decide the optimal size of the ESS based on the economic value. In Section 6, for a verification
purpose of our analytical results, we conduct an extensive numerical study with real data compiled
from a wind farm located in South Korea and the Korean electricity market. Lastly, conclusions and
discussions are presented in Section 7.

2. Literature Review

This section summarizes the recent research progress in assessing the economic value of ESS and
the related decision-making problems. Even though a very large number of previous studies exist,
we only focus on studies dealing with the economic aspect of the ESS in a grid-connected wind-ESS
hybrid system, particularly. Two previous studies can provide more general reviews covering several
aspects, including power fluctuation mitigation, frequency regulation, and so on [12,13]. In comparison
with previous literature, we clarify the contributions of this research and briefly describe the regulatory
framework on the ESS operation and relevant studies in Korea.

2.1. Summary of Methodological Advance

Since the mid-2000s, several studies have considered the effective use of ESS regarding the
interplay of wind turbines, energy storage, and transmission capacity and the evaluation of its economic
value [13–16]. These studies were based on deterministic sample paths of electricity price and wind
energy dynamics by analyzing historical data. By conducting extensive sensitivity analysis for various
sizes of the ESS in the hybrid system, they evaluated the economic value for a specific ESS size
and found the optimal size of the ESS through the simple cost-benefit analysis. The types of ESS
considered in the papers are the compressed air energy storage (CAES) [13–15] and the battery energy
storage [13,16]. However, they have not considered the effect of the management policy of the ESS,
which can vary its economic value.

To find the optimal management policy of the ESS in the hybrid system, several studies
have employed deterministic optimization models. The deterministic models assume that the
future values of electricity spot price, demand load and wind energy generations are known.
Korpaas et al. [17] characterized an optimal strategy for ESS operation and sizing an on-site ESS
with given capacities of a wind farm and transmission to the external grid, and a known demand
distribution. They used a dynamic programming approach to analyze the strategy. Brekken et al. [18]
considered a large wind farm integrated with an on-site zinc-bromine flow battery, with the objective of
meeting an hour-ahead predicted power output to a large grid. They focused on the total costs of the
entire grid rather than the hybrid system and ignored the transmission capacity between the hybrid
system and the grid. It was shown that an optimal operation strategy could result in significantly
lower costs than a simple strategy. Zhang and Li [19] used a two-scale dynamic programming
scheme and considered the least-cost management policy of a wind-ESS hybrid system, assuming
that local demand was known and the ESS was allowed to charge the electricity from the utility grid.
Luo et al. [20] and Bridier et al. [21] also optimally determined the ESS size and its management
policy for a system similar to the system considered in this study (see Section 3). Both studies applied
heuristic approaches to solve their deterministic models.

However, some researchers and practitioners have criticized the critical limitation of previous
studies because they ignored the uncertainty associated with electricity spot price and wind energy.
This uncertainty can significantly affect the assessment of the economic value and the decision-making
problems. Taking into account the uncertainty, several papers have suggested methodologies for
the optimal sizing and/or management of the ESS. Some studies used MDP models and stochastic
dynamic programming approaches to find an optimal ESS management policy and evaluate its
economic value based on the policy. Shu and Jirutitijaroen [22] found the optimal policy from their
stochastic MDP model. They showed that the policy could lead to considerably higher profits than an
optimal policy derived from a deterministic model because the deterministic model underestimated
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the economic value of the ESS. Kim and Powell [23] derived a mathematical form for an optimal
management policy of an ESS in a wind farm assuming simple probability distributions for uncertain
factors. They used the policy to study the economics of the storage capacity. Similarly, Zhou et al. [24]
suggested an optimal policy for operating a wind-ESS hybrid system with limited transmission capacity
and quantified the economic value of the ESS under the policy. However, the optimal ESS size under
uncertainty was not the main consideration in those studies, and this could be critical for installing a
new ESS. Harsha and Dahleh [25] defined the economic value of the ESS as reductions in the long-run
average cost by using the ESS based on an infinite-horizon MDP model and examined the trade-off
between the value and capital costs of the storage in a simple convex optimization problem to find the
optimal ESS size.

Contrary to previous studies, we introduce a way to determine the optimal ESS size that
maximizes the economic value of ESS. Table 1 summarizes the literature review and emphasizes
how our study is different with previous studies. We mainly refer to the work in [24,25] when
formulating an MDP model in Section 3. However, we consider that the ESS cannot charge the
electricity transmitted from the utility grid because it is more suitable for the Korean regulatory
framework (see Section 2.2).

2.2. Studies in Korea

Under the Korean regulatory framework, a grid-connected wind farm is allowed to sell its
generated electricity through a wholesale electricity market, operated by Korea Power Exchange (KPX),
if it has more than 1000 kW nameplate capacity. The electricity generated by a wind-ESS hybrid system
is sold at the system marginal price (SMP), along with additional benefits such as high tradeable RECs
and investment and production tax credits [26,27]. Thus, wind-ESS hybrid systems are not allowed
to purchase electricity from the grid to receive the benefits. If the ESS is able to charge electricity
from the grid to provide an arbitrage opportunity, the ESS becomes an individual power provider
who is likely to increase its profit only by trading electricity with the grid instead of being a tool to
promote wind energy. Several previous studies in Korea considered a situation where the electricity
transmission from a wind-ESS hybrid system to grid is allowed, but the reverse is not [28–30].

To the best of our knowledge, little research has simultaneously considered the economic value
assessment and optimal sizing of the ESS in Korea. Only a few studies have suggested a simple
method for determining the ESS size. Lim [31] presented a simple linear programming model to
design the optimal ESS size in a hybrid system consisting of solar PV, wind and tidal. Cho et al. [32]
proposed a heuristic method for the optimal sizing of a demand side customer’s battery storage system.
Therefore, this study contributes to the limited literature and supports decision-makers by providing
tangible research outcomes based on real data from a wind farm in Korea.

3. Optimal ESS Management Policy Model

In this study, we consider a grid-connected hybrid system as shown in Figure 1. The hybrid
system has several wind turbines (a wind farm) and an ESS, and the system is connected to a large
utility grid via a transmission line. The system can sell all the generated electricity to a wholesale
market on the grid assuming that the amount of generated electricity is negligible compared to the
total amount of electricity on the grid. The generated electricity is sold at SMP on the wholesale
electricity market and the amount does not affect the SMP values. It is also assumed that the electricity
from the grid cannot be transmitted to the hybrid system through the transmission line as in the
Korean regulatory framework described in Section 2. Here, the electricity generated from the turbines
cannot be accurately anticipated due to uncertain wind speed, but the ESS will save some electricity
from the farm to provide the electricity to the grid when the wind turbines cannot generate enough
electricity. Thus, the stored electricity can be sold to increase the profit of the wind farm when the
SMP is relatively high.
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Table 1. The literature on optimizing an energy storage system (ESS) in a wind farm.

Electricity Price & Wind Energy Dynamics Optimal Management Policy Optimal Sizing ESS Technology

Denholm and Sioshansi [14] deterministic profiles not considered considered Compressed air energy storage
Fertig [15] deterministic profiles not considered considered Compressed air energy storage

Johnson et al. [16] deterministic profiles not considered considered Radox and sodium sulfur battery
Berrada and Loudiyi [13] deterministic profiles not considered considered multiple technologies

Korpaas et al. [17] deterministic profiles deterministic optimization considered not specified
Brekken et al. [18] deterministic profiles deterministic optimization not considered Zinc-bromine flow battery
Zhang and Li [19] deterministic profiles deterministic optimization not considered Li-ion battery

Luo et al. [20] deterministic profiles deterministic optimization considered Li-ion battery
Bridier et al. [21] deterministic profiles deterministic optimization considered not specified

Shu and Jirutitijaroen [22] stochastic models finite-horizon MDP not considered Compressed air energy storage
Kim and Powell [23] Stochastic models infinite-horizon MDP not considered general battery

Zhou et al. [24] Stochastic models finite-horizon MDP not considered general battery
Harsha and Dahleh [25] Stochastic models infinite-horizon MDP considered not specified

Our study Stochastic models finite-horizon MDP considered Li-ion battery
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Figure 1. System definition.

For this situation, we first identify the optimal operating policy of the ESS in the hybrid system.
The operator of the system needs to periodically make decisions on the optimal level of stored electricity
subject to the wind power availability, ESS capacity, SMP price, and transmission capacity. That is,
under uncertainty of wind power generation and SMP price, the system makes decisions periodically
over a finite horizon, at each time t in the finite set T := 0, τ, ..., T − τ (that is, the length of time interval
is τ). Assuming that the wind power is a Markov process and the SMP value at a specific time period
follows a probabilistic distribution, an MDP model is used to sequentially make the decisions in this
paper. Therefore, we consider this problem as a period-review inventory management problem where
decisions are made at equally spaced points in time, and we develop a finite-horizon periodic-review
MDP model as follows:

Parameters:

• S: storage capacity of the ESS (in energy units, e.g., MWh).
• W: nameplate capacity of the wind farm (in energy unit/period, e.g., MW).
• Ri, Ro: charging and discharging capacity of the ESS in a specified period, respectively (in energy

units/period, e.g., MW).
• ρi, ρo: charging and discharging efficiency of the ESS, respectively (ρi, ρo ∈ (0, 1]).

Each accounts for the storage conversion losses, and the round-trip efficiency is then ρ = ρiρo

(ρ ∈ (0, 1]).
• CT : transmission capacity (in energy unit/period, e.g., MW).
• η: transmission efficiency, the ratio of energy dissipated by the load to the transmission line.
• δ: one-period risk-free discount rate (0 < δ ≤ 1)

Generally, the charging and discharging capacities are the same, Ri = Ro, so we assume that
R = Ri = Ro in this study.

State Variables:

The period t is defined as the time interval [t, t + τ). We assume that the state variables with
subscript t are realized at the beginning of period t. For example, the amount of wind electricity
generated in the time interval [t, t + τ) is known at time t, denoted by wt. It is assumed that the wt

is followed by a well-known stochastic process after t. In this work, we use an exogenously defined
Markovian process to model wt. In addition, the electricity price at time period t, denoted by pt,
is assumed to follow a pre-defined electricity SMP pattern. Thus, the state at time t is defined by the
following variables:

• xt: the level of available electricity in the ESS at the beginning of period t (in energy units,
e.g., MWh) (xt ∈ [0, S]).

• wt: the wind electricity generated in time period t (in energy units, e.g., MWh) (wt ∈ [0, τW]).
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• pt: the electricity price at time t, which will not be changed during the time period [t, t + τ)

(in currency unit/energy units, e.g., $/MWh)

The tuple Et = {xt, wt, pt} forms the state of our problem.

Decision Variable:

• at: the amount of electricity to charge/discharge at time period t (in energy units, e.g., MWh).

It is positive when the electricity is stored (if at > 0, charging) and negative when a part of stored
electricity is withdrawn to be sold (if at < 0, discharging). Assume that there is no way to buy and
store electricity from the grid, that is, electricity generated only by wind turbines can be stored:

State Transition:

• xt+1 = xt + at,
• wt+1 = g1(wt) and pt+1 = g2(pt).

The level of available electricity in the ESS at time period t + 1 changes depending on the
amount of electricity to charge/discharge at time period t. The state variables wt and pt evolve to wt+1

and pt+1 according to their respective exogenous stochastic process, expressed as known functions
g1(·) and g2(·), and we assume that they are mutually independent.

Immediate Payoff Function and Constraints:

Let f (at, xt, pt, wt) be the immediate payoff function at time t, defined as

f (at, xt, pt, wt) =

{
pt ·min

[
(wt − at/ρi)

+, τCT] · η, if at ≥ 0,

pt ·min
[
(wt − ρoat)+, τCT] · η, if at < 0.

When a part of wind electricity generated at time t is stored (at ≥ 0), the selling amount can be
smaller than the generated electricity at time t. If a part of the stored electricity is extracted and
delivered (at < 0), the total amount of electricity sold at time t becomes the generated wind electricity
plus the electricity extracted from the storage at time t. In both cases, the amount of electricity to sell
cannot be greater than the given transmission capacity. To specify feasible values of at, we consider
several constraints as follows:

• When at ≥ 0, 
xt + at ≤ S :storage capacity,

at ≤ ρi · wt :wind electricity generation,

at ≤ τR :ramping constraint - charging rate,

• When at < 0, {
−at ≤ xt :ESS stored electricity availability,

−at ≤ τR :ramping constraint - discharging rate.

These constraints can be combined by

s.t. max(−xt,−τR) ≤ at ≤ min (S− xt, ρiwt, τR) .

Objective Function:

Our objective is to maximize the total discounted expected cash flows, monetary benefits that the
grid operator can make by selling the electricity into the grid, over all feasible decisions:
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max
π∈Π

T−1

∑
t=0

δtE[ f (aπ
t , xt, pt, wt)|Eo], (1)

where π is a feasible policy that is a sequence of decisions, and Π is the set of all feasible policies.
The expectation is taken with respect to the distribution of the random state Et in time period t.
The exogenously determined stochastic models for wind electricity and electricity price induce the
distribution, and the value function of the optimal management policy for state Et in each time period
t is defined as

V∗t (Et) = max
at

f (at, xt, pt, wt) + δE[Vt+1(xt + at, wt+1, pt+1)|Et]. (2)

In addition, we assume that the remaining electricity in the ESS at the end of time period T is
worthless, that is, V∗T (ET) = 0, ∀ET .

4. Analysis of Optimal ESS Management

We now proceed to investigate structural properties of the optimal management policy of the ESS.
In particular, we analyze charging/discharging action, a∗t (Et), of the MDP model defined in Section 3,
with a given storage and charging/discharging capacities, denoted by S and R, respectively. If the
electricity prices and the amount of wind electricity generated are known in advance, the optimal
management policy can be easily determined by using the deterministic dynamic programming.
However, since we assume that both the electricity price and the wind electricity generated follow the
exogenous stochastic processes, the ESS management policy should consider their variabilities.
In addition, the ramp constraints from the charging/discharging capacities of the ESS and the
maximum electricity sale constraint from the transmission capacity raise other concerns about the
optimal management policy.

The structure of the optimal management policy can be established in a way that is similar to
previous studies [24,25]. To derive the optimal management policy, a∗t (Et), the well-defined stochastic
models for wind electricity generation and electricity price are incorporated into the MDP model, so the
optimal ESS management decision at each time period can be found using standard backward recursion.
Before we analyze the optimal management policy, in a way that is similar to the proofs of Lemma 1 and
Proposition 2 in the study of Zhou et al. [24], we could see a property that the value function V∗t (Et) is
a non-decreasing and concave function in the level of available electricity in the ESS, xt, given any wind
electricity generated wt and the electricity price pt. This property implies that, without the holding
cost for the electricity stored in the ESS, the more electricity the ESS has, the greater the monetary
benefit. Moreover, the marginal benefit decreases with a higher level of electricity. With this property,
we show that the optimal management policy has different dual-threshold structures depending
on the two state variables xt and wt. We also show that these dual-threshold levels are functions
of two state variables wt and pt. Three cases are possible for which the two state variables xt and
wt represent different situations, and the optimal management policy has different dual threshold
structures. Figure 2 illustrates these cases.

Case 1, (xt, wt) ∈ (A1), represents a situation where the amount of the wind electricity
generated in time period t is very large; thus, even though the ESS is charged as much as possible,
the remaining electricity is still larger than the maximum transmittable amount of electricity through
the transmission line to the grid. Secondly, case 2, (xt, wt) ∈ (A2), represents a situation where the
amount of the wind electricity generated in time period t is large, but, if the ESS is charged as much as
possible, all of the remaining electricity can be transmitted to the grid. Lastly, case 3, (xt, wt) ∈ (A3),
represents a situation, where the wind electricity generated in time period t is less than the maximum
transmittable amount of electricity through the transmission line to the grid. Proposition 1 establishes
the structure of the optimal management policy, and its proof is provided in Appendix A. Table 2
summarized the situations and corresponding optimal ESS management policies in three cases.
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Proposition 1. The optimal charging/discharging action at time period t, a∗t (Et), is determined by two threshold
functions, xt(wt, pt) and xt(wt, pt), as follows:

case 1: if (xt, wt) ∈ (A1), a∗t (Et) = min{τR, S− xt}, (3)

case 2: if (xt, wt) ∈ (A2), a∗t (Et) =

{
min{xt − xt, τR}, if xt ∈ [0, (xt − (wt − τCT)ρi)

+],
(wt − τCT)ρi, if xt ∈ [(xt − (wt − τCT)ρi)

+, S],
(4)

case 3: if (xt, wt) ∈ (A3), a∗t (Et), =


min{xt − xt, wtρi, τR} if xt ∈ [0, xt],
0 if xt ∈ [xt, xt]

max{xt − xt, (wt − τCT)/ρo,−τR} if xt ∈ [xt, S],
(5)

where, when yt = xt + at (the ending level of available electricity in the ESS), the two thresholds can be defined
as follows:

store-up-to level: xt = arg maxyt∈[0,S] − ptyt/ρi + δE[Vt+1(yt, wt+1, pt+1)], (6)

sell-down-to level: xt = arg maxyt∈[0,S] − ptytρo + δE[Vt+1(yt, wt+1, pt+1)]. (7)

Figure 2. Cases of two state variables xt and wt.

Table 2. Situations and corresponding optimal ESS management policies in three cases.

Case Situation and Optimal Action (Proposition 1)

Case 1 Situation : wind electricity ≥ transmittable and storable electricity
(wt ≥ τCT + min{τR, S− xt}/ρi)

(A1) Optimal Action : store as much as possible

Case 2 Situation : transmittable electricity ≤ wind electricity < transmittable and storable electricity
(τCT ≤ wt < τCT + min{τR, S− xt}/ρi )

(A2) Optimal Action : store up to xt and sell remains, or sell as much as possible and store remains

Case 3 Situation : wind electricity < transmittable electricity
(wt < τCT)

(A3) Optimal Action : store up to xt, do nothing, or sell down to xt

Note that, when we have the charging/discharging efficiencies, ρi, ρo, the optimal management
policy has a two-threshold structure. If ρi = ρo = 1, then the two thresholds are the same, xt = xt.
Under the two-threshold structure, the optimal charging/discharging action in Proposition 1 implies
the following situations. In case 1, (xt, wt) ∈ (A1), a part of the large amount of the wind electricity
generated at the time period t will be transmitted to the grid as the maximum transmission capacity,
τCT , another part of the wind electricity will be charged into the ESS as much as possible, and the
remaining part of the wind electricity will be curtailed. In case 2, (xt, wt) ∈ (A2), the amount of the
wind electricity generated at the time period t, at most τCT amounts will be transmitted into the grid
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and at least (wt − τCT) amounts will be charged into the ESS. If the level of available electricity in
the ESS at the beginning of the time period is low enough, then the ESS will be charged up to the
store-up-to level. In case 3, three possibilities exist. First, some parts of the wind electricity generated at
the time period t will be charged and the other parts of the wind electricity will be transmitted into the
grid when the level of available electricity in the ESS at the beginning of the time period is low enough.
Second, all wind electricity generated at the time period t will be transmitted into the grid when the
level of available electricity in the ESS at the beginning of the time period is between the store-up-to
level and the sell-down-to level. Finally, not only will all wind electricity generated at the time period
t be transmitted into the grid, but also some parts of the electricity stored in the ESS will be discharged
and transmitted into the grid when the level of available electricity in the ESS at the beginning of the
time period is high enough. Figure 3 shows the structure of optimal charging/discharging action of
the ESS in case 3.

Figure 3. The structure of optimal charging/discharging action of the ESS in the case 3, (xt, wt) ∈ (A3).

5. Economic Value and Optimal Sizing of ESS

This section presents the way to assess the economic value of ESS under the optimal storage
management policy established in the previous section and to find its optimal size based on the
economic value. The profit at a wind farm is made by selling electricity generated by wind turbines or
stored in storage facilities. For a given size of ESS, the amount of electricity sold at time period t can be
optimally determined taking into account the variabilities of wind electricity and electricity price as
described in the previous Section 4. It is obvious that the value function without ESS (S = 0) is less than
that with ESS (S > 0). We estimate the economic value of ESS by computing the difference between
the value functions with ESS and without ESS. Assuming that the investment cost for ESS depends not
only on storage capacity S but also charging/discharging capacity R, we define the cost function in a
simple way, as in previous studies [18,33]. As the storage capacity, S, and the charging/discharging
capacity, R, of the ESS are considered as the decision variables, the optimization problem to maximize
the net profit can be formulated as follows:

maxS,R

(
Ept ,wt

[
∑T−1

t=0 δt pt min[(wt + atβt)+, τCT ] · η
]
−Ept ,wt

[
∑T−1

t=0 δt pt min(wt, τCT)
]
− (csS + crR)

)
, (8)

where cs and cr are the unit capital costs for the storage capacity and the charging/discharging
capacity of ESS, respectively. Here, βt represents the charging/discharging efficiencies, i.e., −1/ρi if
at ≥ 0 and −ρo if at < 0. Since the wind electricity and electricity price are not deterministic, we take
the average profit under the optimal management policy of ESS. The first term of the function above is
the average profit made by selling electricity with ESS. On the other hand, the second term is the
average profit without ESS when all amounts of electricity generated at time period t are sold at the
current price pt. As a result, the difference between the first term and second term is defined as the
economic value of ESS. The third term is the investment cost for storage over the time horizon, T.
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In general, the value of the first term cannot be simply estimated because the optimal value of at

with a specified size of ESS must be first obtained, as we described in Section 4. Thus, we consider the
two-stage optimization approach. At the first stage, a specified size of ESS, (S, R) is fixed, and then
the optimal management policy of the ESS is determined at the second stage to compute the average
values in Equation (8). By testing various ESS sizes, the optimal ESS size will be searched. For our
analysis, it is useful to define the following function with a∗t (S, R), which is the optimal at with a given
size (S, R):

f (S, R) = Ept ,wt

[
T−1

∑
t=0

δt pt min[(wt + a∗t (S, R)βt)
+, τCT ] · η

]
. (9)

In fact, this function is equivalent to the optimal value of the first term of Equation (8) and indicates
the average profit with the optimal ESS management policy under a given size (S, R). According to
Theorems 11 and 12 of Harsha and Dahleh [25] and our numerical results in Section 6, we could
see a property where f (S, R) is non-decreasing and concave in S and R. With this property, it is
also easy to see that the objective function in Equation (8) is concave because the second term is
not dependent on S and R and the third term csS + crR is a linear combination of S and R. Thus,
the optimal ESS size — storage and charging/discharging capacities, (S∗, R∗)—can be obtained by any
two-dimensional search methods, such as the method of gradient descent.

6. Numerical Study

In this section, we apply our analytic approach to find the optimal ESS size based on the
appropriate evaluation of economic value for a real-world grid connected wind farm—Shinan wind
farm (for more information, see [34]) located in the South Korea—as a numerical study. The wind farm
consists of three Mitsubishi MWT-1000A turbines (Mitsubishi, Shinan-gun, Republic of Korea) and
the total generation capacity of the wind farm is 3× 1 MW = 3 MW. The wind farm started operation
in December 2008. Using historical wind electricity generation data of the wind farm and historical
electricity price data of the Korean electricity market, we develop two stochastic models for wind
electricity and electricity price. Since both historical data are hourly-based data, the time unit in this
numerical study is set to be one hour. Relative to the smallest capacity of the general transmission
line to the grid (about 20 MW), the total generation capacity of the wind farm is too small. As a result,
the transmission capacity term, CT , in our model turns out to be ignored for this numerical study.
Hence, the optimal charging/discharging action in Proposition 1 is not affected by the CT , but the two
threshold values of xt(wt, pt) and xt(wt, pt) for each wt and pt still exist.

6.1. Experimental Setup

In this numerical study, the economic value of ESS is evaluated by testing several storage capacities,
S, and charging/discharging capacities, R. The storage levels are discretized in 0.01 MWh increments.
The storage efficiency parameters are fixed as ρi = 0.9 and ρo = 0.95, so the roundtrip efficiency is 0.85.
The annual risk-free discount rate is assumed to be 10%.

The unit time period in the MDP model is one hour, but we compare the expected annual economic
value and the annualized investment cost of ESS in order to determine its optimal size for the given
wind farm. With this time scale, in order to avoid the computational burden, we calculate the expected
annual economic value of ESS as follows. First, based on monthly differentiated wind electricity and
electricity price models, we obtain the expected economic value of ESS for one day in a specific month
from the increment between the value function of the MDP model with ESS and without ESS under
the optimal management policy. The analysis for one day can incorporate the hourly variations of
wind electricity and electricity price sufficiently. However, in order to avoid the effect of the terminal
condition usually occurring in finite MDP models, we use the increment of the value function between
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time period 0 and time period 24 after setting the analysis time horizon, T, of the MDP model as 48 h
(i.e., two days).

Thus, the economic value of ESS for one day in a specific month, Dm(S, R), can be calculated
as follows:

Dm(S, R) = (V∗0 (S, R)−V∗24(S, R))− (V∗0 (0, 0)−V∗24(0, 0)),

where V∗t (S, R) is the value function of the optimal management policy at time period t under given
S and R when T = 48. Here, we calculate the ‘expected’ economic value for one day with different
levels of initially stored electricity.

With the above economic values for one day in each month, the expected economic value for each
month is calculated by multiplying the numbers of days in the corresponding month (Mm × Dm(S, R),
where Mm is the number of days in the month m). After that, the sum of each expected economic
value for each month becomes the expected annual economic value (i.e., Y(S, R) := ∑12

m=1 Mm × Dm(S, R)).
This approach can incorporate monthly variations of wind electricity and electricity price explicitly.

6.2. Wind Electricity Model

To construct the wind electricity model, we collected historical data of wind electricity generated
from March 2009 to February 2011. The wind speed data in the wind farm can be used, but it should be
converted into electrical power considering the height of wind turbines, wind density, maintenance,
breakdowns, etc. This transformation could reduce the accuracy of the wind electricity model, so we
decided to use the generated wind power data directly.

Figure 4 shows the wind electricity generated in January 2011 and June 2010, and indicates that
the amount and variability of wind electricity are different for each month. The mean and standard
deviation of each month are shown in Figure 5. As shown in these figures, the monthly difference is
clearly observed. In Figure 6, the mean values of wind electricity per hour for each month are shown
and hourly patterns seem obvious. Even though the yearly variation exists, it is not as significant as
monthly and hourly variations. Thus, we focus on monthly and hourly variations to build a stochastic
wind power model.
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Figure 4. Wind electricity generation of the wind farm in Shinan, South Korea. (a) wind electricity on
January 2011; (b) wind electricity on June 2010.
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Figure 5. Monthly statistics of wind electricity of the wind farm in Shinan, South Korea. (a) average
wind electricity; (b) standard deviation of wind electricity.
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Figure 6. Average wind electricity generation per hour for each month

The wind electricity has often been modeled as an autoregressive (AR) model in the
literature [24,35], so we extensively analyzed the collected data and found that the collected data
can also be properly modeled by an AR model in our previous study [36]. The procedures for the
data preprocessing and the model development can be summarized as follows. First, we transform
the raw data, shown to be a non-stationary and non-Gaussian process, into the data, which follow a
stationary and Gaussian process. Then, to remove the seasonal and diurnal effects of the transformed
data, each of the data is standardized and stabilized by Equation (10), which is similar to standardizing
normally distributed data:

zt =
G(wt)− G(w̄(m,h)

t )

σ
(m,h)
t

, (10)

where wt is the amount of wind electricity at time t, G(·) is a transformation function such as the
box-cox transformation, m is the index for month during a year (m = 1 ... 12),

h is the index for one hour [h, h + 1) during a day (h = 0 ... 23), and w̄(m,h)
t and σ

(m,h)
t are the

sample mean and standard deviation of wind electricity generated at corresponding hour, h, on month,
m. By testing several statistical tests, we conclude that the resulting zt with G(·) =

√
· for the hourly

data of two years can be effectively modeled by AR(1) as follows:

zt = φzt−1 + ε,

where φ is the AR coefficient and ε ∼ N(0, σ2
Z), which are estimated as φ = 0.9335 and σ2

z = 0.1265 for
our data.

To develop a discretized version of the dynamic programming for our MDP model, we discretize
the wind electricity generation and construct the trinomial model for each month by the method
described in Jaillet et al. [37]. In our numerical study, the trinomial lattice is built to model zt for
two days each month, i.e., 48 h, to coordinate the analysis time horizon of our MDP model and the
corresponding wind electricity, wt, is obtained by reversing the Equation (10) and limiting each value
between maximum (3 MW) and minimum values (0 MW). Here, since AR(1) is a discrete-time analogue
of the mean-reverting process, the wind electricity model is basically a Markov process.

6.3. Electricity Price Model

In a similar way to the method of constructing the wind electricity model, we collected historical
data of electricity prices in the Korean electric power system, in order to construct the electricity
price model. We collected hourly-based SMP data during the last three years, from 2012 to 2014,
from a web-based database system operated by Korea Power Exchange, Electric Power Statistic
Information System (EPSIS) [38]. The data exhibit the minimum and maximum SMPs during the
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years at 34.51 KRW/kWh and 281.76 KRW/kWh, respectively. Figure 7 shows the estimated average
SMPs and its standard deviations at each h and each m, used for this numerical example.

Figure 7. Estimated sample mean and one standard deviation range of SMPs at each hour on each
month based on 3-year historical data in the Korean electric power system.

By using the historical data, we develop an independent and identically distributed (IID) price
model as in the literature [25]. It contains two main characteristics of electricity price—hourly and
monthly seasonality as well as volatility, as follows:

pt = p̄(m,h)
t + σ(m,h)et, (11)

where p̄(m,h) is the estimated sample mean SMP at corresponding h and m, σ(m,h) is the estimated
sample standard deviation of SMPs at corresponding h and m, and et is the IID standard normal
random number (et ∼ i.i.d. N(0, 1)). By discretizing the random number et into seven numbers with
the probabilities from the standard normal distribution, we also discretize the electricity price model.
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6.4. Costs and Capacities of the ESS

In order to find the optimal ESS size, the capital costs of ESS should be incorporated as we
described in Section 5. Even though the ESS capital costs are still very uncertain, we use the
reference capital costs based on recent, highly cited literature [39,40]. Among several types of
storage technologies, we focus on the capital costs of the lithium-ion battery as our reference
costs data in this numerical study, which are 600–2500 USD/kWh for storage capacity and
1200–4000 USD/kW for charging/discharging capacity. Even though it has higher costs compared to
other technologies, we choose the technology because it has many advantages such as high energy
density, high charge/discharge currents, and high efficiency, so it is the most popular in several
recent real-world ESS projects in wind farms [2]. According to the projects, we further assume that
its discharging duration time can vary from 15 min to 6 h, which is 0.25R ≤ S ≤ 6R. In addition,
we assume that the lifetime of the ESS is 10 years.

Using the reference costs of the lithium-ion battery, we simply calculate the equivalent annual
cost (EAC) for cr and cs as follows:

EAC = Capital Cost× 0.1
1− 1

(1+0.1)10

. (12)

The value ranges of cr and cs can be estimated as [195, 651] × 106 KRW/MW/year and
[98, 391] × 106 KRW/MWh/year, respectively, when we assume that the exchange rate is 1000 KRW/$.

6.5. Results

6.5.1. Expected Annual Economic Value

The results of numerical analysis show that the annual economic value of the ESS, Y(S, R), depend
on the sizes of storage capacity, S, and charging/discharging capacity, R. Figure 8 compares Y(S, R)
for different levels of S and R.

As expected, Y(S, R) increases as the storage capacity and charging/discharging capacity increase,
which indicates that storing more electricity and faster charging and discharging rates of ESS will
give a better profit. However, the value Y(S, R) does not increase in R when R > S, which implies
that the charging/discharging capacity does not need to be greater than the storage capacity. Since the
unit time period in this numerical study is one hour, the fast charging/discharging capability does not
give an additional economic value for ESS—the charging/discharging capacity is large enough so the
ESS can store or release electricity fully within one hour. It is also shown that Y(S, R) is concave with
respect to S and R, which means that the marginal value of Y(S, R) decreases as R increases with a
fixed S and as S increases with a fixed R.

We argue that the annual economic value of ESS largely depends on how to operate and manage
the system, and the proposed MDP model is successful in achieving a better economic value by
optimally operating the ESS. We validate the economic excellence of the proposed model by comparing
the annual economic values obtained by applying two management policies for operating the ESS,
one using the proposed MDP model and the other using a simple rule developed similar to the
literature [13,16]. The simple rule uses the means of historical data of wind electricity and electricity
price as their deterministic profiles, allows only one time of charge/discharge cycle per day, and makes
the ESS fully charged at the lowest electricity price and fully discharged at the highest price.

For comparison purposes, we run a test for a situation where S and R are 1.5 MWh and 1.5 MW,
respectively. The test shows that operating the ESS by the simple rule provides much lower economic
value than using an optimal policy proposed in this study. The economic value based on the simple
rule is approximately 17 ×106 KRW/year, which is only about 40% of the economic value expected
from our method. This simple comparison strongly supports the importance of an optimal policy for
operating the ESS. Furthermore, it implies that wind farm owners are likely to make an erroneous
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decision on the ESS size determination when they do not follow an optimal management policy but
use a simple rule.
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Figure 8. Annual economic values Y(S, R) for different storage sizes S and different charging/discharging
capacities R.

6.5.2. Optimal Size

With the above annual economic value of ESS, the optimal storage size S∗ and optimal
charging/discharging capacity R∗ in Equation (8) can be obtained when the financial cost of storage
(crR + csS) is specified. Given the cost ranges we refer to in Section 6.4, we surmise that it is impossible
to make a profit from the ESS in the wind farm. We further note that, if the reference costs were
reduced by a factor of 10, then the wind farm may make a profit from the installation of ESS with
appropriate sizes of S and R. Therefore, we consider the revised reference costs (reduced by a factor
of 10) below. To help select the optimal values of S and R, Figure 9 presents the expected annual
economic value, Y(S, R), and is compared with the cost range of cr, [19.5, 65.1] ×106 KRW/MW/year,
with different values of R for a fixed S = 1.5 MWh (cs = 10× 106 KRW/MWh/year), which is a
two-dimensional cross-section of the three-dimensional values in Figure 8. Even with the revised
reference costs, the installation of ESS is not profitable in most cases. Nevertheless, by selecting R
between 0.3 MW and 1.5 MW, the installation of ESS into the given wind farm can be profitable with
the investment cost close to the lower bound (i.e., cc is close to 19.5×106 KRW/MW/year). In addition,
notice that Y(S, R) stays at the same value when R is greater than 1.5 MW because the storage size S is
set to 1.5 MWh, which indicates that R does not have to be greater than S.

On the other hand, Figure 10 shows the expected annual economic value, Y(S, R), and is
compared to the cost range of cs, [9.8, 39.1]×106 KRW/MWh/year, with different values of S for a fixed
R = 1.5 MW (cr = 20× 106 KRW/MW/year), which is also a two-dimensional cross-section of Figure 8.
Due to the high cost of R (20× 106KRW/MW/year), the profit cannot be earned until S is greater than
about 1.8 MWh with the investment cost close to the lower bound (i.e., cs = 9.8× 106 KRW/MWh/year).
To determine an appropriate choice of the ESS size, a careful comparison of cr and cs should be made to
maximize the economic benefit from the ESS. From the results in Figures 9 and 10, it can be seen that S
needs to be at least greater than R and R needs to be greater than S/5, i.e., R < S < 5R.
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Figure 9. Annual economic values Y(S, R) for different values of R and the range of unit cost per year
cr when S = 1.5 MWh and cs = 10× 106 KRW/MWh/year.
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Figure 10. Annual economic values Y(S, R) for different storage sizes and the range of unit cost per
year cs when R = 1.5 MW and cr = 20× 106 KRW/MW.

From the above comparisons between economic values of ESS and costs ranges, we establish a
guideline for a wind farm owner who is considering the installation of the ESS, about how he or she
can decide appropriate sizes of the ESS, S and R, in his or her farm. Furthermore, the comparison
results give other guidelines to ESS manufacturers and policy makers. ESS manufacturers can identify
how much they need to reduce costs of ESS in order for the ESS to have cost-competitiveness in
South Korea, and, at the same time, the policy makers can identify how much subsidy the government
needs to provide for the installation of the ESS in wind farms under the given electricity wholesale
market, wind electricity potential, and costs of the ESS.
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6.5.3. Sensitivity Analysis

In our numerical study, we notice that the economic value of the ESS is affected by several factors
such as ESS management policy, wind electricity variability, and electricity price variability. First of all,
the management policy of the ESS can affect the economic value. Figure 11 illustrates the effect of the
management policy. It shows the difference between the expected annual economic values of the ESS,
Y(S, R), under the optimal management policy and a naive management policy by varying the storage
capacity size, S, with two charging/discharging capacity sizes of R, 0.3 MW and 3 MW.

The naive management policy is one of the simplest policies where the ESS is charged or
discharged as much as possible if the current electricity price is the minimum or maximum in our
price model, respectively, and do nothing otherwise. As shown in Figure 11, the differences of Y(S, R)
between two management policies are notably large with most combinations of S and R. Note that the
marginal economic benefits from increasing the capacities of the ESS quickly drop to zero under the
naive management policy. Thus, the economic gains obtained by the optimal management policy over
the naive management policy increases as S and/or R increases. This result indicates that the choice
of the ESS management policy is critical when the optimal ESS size is determined. Consequently,
the benefit from ESS can be maximized not only with the optimal size of ESS and but also when the
ESS management policy is carefully determined.
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Figure 11. Annual economic values Y(S, R) of the optimal policy vs. that of the naive policy with
different storage capacity size

To see the impact of wind electricity variability, Figure 12 shows the expected annual economic
values of the ESS, Y(S, R), when the wind electricity model has a different mean and standard deviation.
It shows the results when the storage capacity size, S, is set to 1.5 MWh and charging/discharging
capacity sizes, R, are set to 0.3 MW or 3 MW.

To remove the monthly effect of wt, we fix the mean and standard deviation of wt, i.e., w̄(m,h)
t

and σ
(m,h)
t in Equation (10). As a result, the trinomial model for wt becomes the same for each month.

With 3 MW of R, the Y(S, R) increases as more wt is produced, but when the mean of wt is greater than
the storage capacity size S = 1.5 MWh, the increment of Y(S, R) becomes smaller, as expected. It is
interesting to note that the larger variability of wt does not help improve the economic benefit of the
ESS. This is because a larger variability of wt might give less of a chance to take advantage of the price
variability, compared to a smaller variability of wt, i.e., it would be unable to charge more at a lower
price and discharge more at a higher price. With 0.3 MW of R, the distribution of wt does not affect
Y(S, R) much since the use of the ESS is limited due to the small value of R.
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Lastly, Figure 13 compares the expected annual economic values of the ESS, Y(S, R), when the
electricity price model has a different standard deviation with a fixed mean, p̄(m,h)

t = 150 KRW/kWh.
It also shows results when the storage capacity size, S, is set to 1.5 MWh and charging/discharging
capacity sizes, R, are set to 0.3 MW or 3 MW. To remove the monthly effect of pt, we fix the mean and
variance of pt for each month and each hour in Equation (11). We should note that a larger variability
of pt improves the economic benefit of the ESS because the electricity range becomes wider with the
larger variance of pt.
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Figure 12. Annual economic values Y(S, R) for different mean and standard deviations of wind
electricity model, w̄(m,h)
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Figure 13. Annual economic values Y(S, R) for different standard deviations of SMP σ(pt)

(p̄(m,h)
t = 150 KRW/kWh).

7. Conclusions

This paper describes how to identify the optimal management policy of the ESS installed in a
grid-connected wind farm in terms of maximizing economic benefits, and, more importantly,
provides an analytic guideline for defining the economic value of ESS under the policy and selecting
its optimal size. Furthermore, a numerical study is carried out to show its usefulness.

In this paper, we define the economic value of ESS as the difference between the average profit
made by selling electricity from a wind farm with ESS and one without ESS, and prove that the
economic value of ESS is non-decreasing and jointly concave with respect to the storage capacity and
charging/discharging capacity sizes. By the numerical results, we show that the economic value of
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ESS increases but its marginal increment decreases as the size of ESS increases. In addition, we find
that the economic value of ESS can be affected by the management policy, wind electricity variability,
and electricity price variability. This result implies that, even with specific investment costs of ESS,
the optimal size of ESS can vary depending on the locational characteristics (about wind electricity
and electricity price) and the management policy of the wind farm, so there is no specific solution for
the optimal size of ESS. Hence, this study could help the wind farm owners, who are considering the
installation of the ESS, make their decisions.

We find that the current investment cost level of the ESS is too high to make a profit by its use,
but battery technology has been growing rapidly, driven by the popularity of electric vehicles and
renewable energies. Therefore, its costs are expected to decrease significantly in a few years, and then
this study will become more valuable. Furthermore, even though we have evaluated the value of the
ESS in terms of economic perspective, ESS is, in practice, also utilized for other objectives such as wind
power quality and reliable electricity supply. Thus, it would be interesting to expand this study to find
the optimal ESS size considering multi-objectives.

The analysis of this paper is based on the assumption that the uncertain variables such as the wind
power generation and the electricity price value evolve according to discretized models. Although the
optimal policy can be effectively found by our MDP model, the discretization error from modeling
those uncertain variables could lead to suboptimal results. This will be the subject of our future
research.
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Appendix A. Proof of Proposition 1

For this analysis, it is useful to define the following function

Ut(yt, pt, wt) := δE[Vt+1(yt, pt+1, wt+1)|Et].

Since Vt is concave in xt for each given state Et, we can easily show that Ut is also concave in
yt for each given state Et.

For each period t and a given state Et, we consider an optimal action at in this state and relax
the charging and discharging constraints −Ri ≤ at ≤ Ro and the transmission constraint CT . Define
yt = xt + at as the decision variable [41]. Since at = yt− xt, the relevant optimization problem becomes

max
yt

f (yt − xt, pt, wt) + δE[Ut(yt, wt+1, pt+1)|Et]. (A1)

For the case that yt ≥ xt i.e., at ≥ 0, the corresponding optimization problem is

max
yt∈[0,S]

pt(wt − (yt − xt)/ρi)
+η + Ut(yt, pt, wt), (A2)

and when yt < xt i.e., at < 0, the optimization problem is

max
yt∈[0,S]

pt(wt − (yt − xt)ρo)
+η + Ut(yt, pt, wt). (A3)
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Since Ut is concave in yt for each given state Et, its derivative with respect to yt denoted by U′t
is non-increasing in yt. Moreover, it holds that −pt/ρiη < −ptρoη. Hence, an optimal solution to
Equation (A2), denoted by xt, is never greater than an optimal solution to Equation (A3) denoted by xt.

Consider the case 1 in Proposition 1. If yt < S and at < 0, then the electricity of |at| + wt

must be transmitted to the grid, but it is not possible due to the transmission capacity. Thus,
|at|+ wt − τCT is greater than zero and becomes useless, so at < 0 is not an optimal solution. On the
other hand, when yt < S and at ≥ 0, wt − at must be transmitted to the grid. From the condition,
wt − at ≥ τCT + (S− xt)− at = τCT + (S− yt). Due to the transmission constraint, the amount of
S− yt > 0 becomes useless. The optimal at for this case is (S− xt) leading to S− yt = 0.

For the case 2, when at < 0, then the amount of |at| + wt must be transmitted to the grid,
but it is not possible due to wt > τCT . Thus, |at| + wt − τCT becomes useless, so at < 0 cannot
be optimal. Hence, the optimal at must be greater than 0. Thus, we consider the maximization
problem (A2) for any xt with at > 0. It is clear that xt is an optimal solution to Equation (A2) when
xt ≤

(
xt − (wt − τCT)ρi

)+. However, if xt >
(
xt − (wt − τCT)ρi

)+, implying that we transmit the
generated electricity as much as possible, but still (wt − τCT)ρi remains and xt ≥ xt, there exists
only one choice of charging the amount of at = (wt − τCT)ρi without considering a loss of generated
electricity.

For case 3, first consider when 0 ≤ xt ≤ xt. It is clear that xt is an optimal solution to Equation (A2)
when yt > xt. On the other hand, if yt ≤ xt, the feasible solution must satisfy yt ≤ xt ≤ xt ≤ xt.
Thus, xt can be a feasible solution to Equation (A3), the objective value becomes ptwtη + Ut(xt, pt, wt),
which is less than pt(wt− (xt− xt)/ρi)

+η +Ut(xt, pt, wt). Hence, the optimal solution to Equation (A1)
is xt and then the optimal value of at is min(xt − xt, wtρi, τR) considering wind electricity generated
and charging capacity.

When xt ∈ [xt, xt] for the case 3, xt is an optimal solution to Equation (A2) because of xt ≥ xt and
also an optimal solution to Equation (A3) because of xt ≤ xt. Thus, the optimal value of at is 0.

When xt ∈ [xt, S] for the case 3, it holds that xt is an optimal solution to Equation (A3) when
yt < xt. If yt ≥ xt, the feasible solution of yt must satisfy xt ≤ xt ≤ xt ≤ yt. Thus, xt can be a feasible
solution to Equation (A3), and then the objective value is ptwtη + Ut(xt, pt, wt) and it is less than
pt(wt − (xt − xt)ρo)+η + Ut(xt, pt, wt). Hence, the optimal solution to Equation (A1) is xt and then
the optimal value of at is max(xt − xt, (wt − τCT)/ρo,−τR) considering transmission capacity and
discharging capacity.
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